Enumerations, Countable Structures and Turing Degrees

نویسنده

  • STEPHAN WEHNER
چکیده

It is proven that there is a family of sets of natural numbers which has enumerations in every Turing degree except for the recursive degree. This implies that there is a countable structure which has representations in all but the recursive degree. Moreover, it is shown that there is such a structure which has a recursively represented elementary extension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O / 0 50 71 28 v 1 6 J ul 2 00 5 TURING DEGREES OF ISOMORPHISM TYPES OF ALGEBRAIC OBJECTS

The Turing degree spectrum of a countable structure A is the set of all Turing degrees of isomorphic copies of A. The Turing degree of the isomorphism type of A, if it exists, is the least Turing degree in its degree spectrum. We show there are countable fields, rings, and torsion-free abelian groups of arbitrary rank, whose isomorphism types have arbitrary Turing degrees. We also show that the...

متن کامل

Generic Muchnik Reducibility and Presentations of Fields

We prove that if I is a countable ideal in the Turing degrees, then the field RI of real numbers in I is computable from exactly the degrees that list the functions (i.e., elements of ωω) in I. This implies, for example, that the degree spectrum of the field of computable real numbers consists exactly of the high degrees. We also prove that if I is a countable Scott ideal, then it is strictly e...

متن کامل

Turing Degrees of Isomorphism Types of Algebraic Objects

The Turing degree spectrum of a countable structure A is the set of all Turing degrees of isomorphic copies of A. The Turing degree of the isomorphism type of A, if it exists, is the least Turing degree in its degree spectrum. We show that there are elements with isomorphism types of arbitrary Turing degrees in each of the following classes: countable fields, rings, and torsion-free Abelian gro...

متن کامل

Jump Embeddings in the Turing Degrees

Much of the work on Turing degrees may be formulated in terms of the embeddability of certain first-order structures in a structure whose universe is some set of degrees and whose relations, functions, and constants are natural degree-theoretic ones. Thus, for example, we know that if (P, ≤P ) is a partial ordering of cardinality at most א1 which is locally countable—each point has at most coun...

متن کامل

Is the Turing Jump Unique? Martin’s Conjecture, and Countable Borel Equivalence Relations

In 1936, Alan Turing wrote a remarkable paper giving a negative answer to Hilbert’s Entscheidungsproblem [29]. Restated with modern terminology and in its relativized form, Turing showed that given any infinite binary sequence x ∈ 2ω, the set x′ of Turing machines that halt relative to x is not computable from x. This function x 7→ x′ is now known as the Turing jump, and it has played a singula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998